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Abstract
By virtue of its great utility in solving real-world1

problems, optimization modeling has been widely2

employed for optimal decision-making across var-3

ious sectors, but it requires substantial expertise4

from operations research professionals. With the5

advent of large language models (LLMs), new6

opportunities have emerged to automate the pro-7

cedure of mathematical modeling. This survey8

presents a comprehensive and timely review of9

recent advancements that cover the entire technical10

stack, including data synthesis and fine-tuning for11

the base model, inference frameworks, benchmark12

datasets, and performance evaluation. In addition,13

we conducted an in-depth analysis on the quality14

of benchmark datasets, which was found to have15

a surprisingly high error rate. We cleaned the16

datasets and constructed a new leaderboard with17

fair performance evaluation in terms of base LLM18

model and datasets. We also build an online portal19

that integrates resources of cleaned datasets, code20

and paper repository to benefit the community.21

Finally, we identify limitations in current method-22

ologies and outline future research opportunities.23

1 Introduction24

Optimization modeling aims to mathematically model com-25

plex decision-making problems that arise from a wide spec-26

trum of industry sectors, including supply chain management27

[et al., 1997], healthcare resource allocation [Delgado et al.,28

2022], air traffic flow management [et al., 2000] and portfolio29

optimization [Mokhtar et al., 2014]. Despite its potential30

to enhance operational efficiency, there exists an expertise31

barrier that limits the broader adoption of optimization tools.32

According to a survey of Gurobi users, 81% of them hold33

advanced degrees, with nearly half specializing in operations34

research [Gurobi Optimization, 2023].35

To automate the procedure and reduce the dependence36

on domain-specific modeling experts, NL4Opt (Natural Lan-37

guage for Optimization) [Ramamonjison et al., 2023] has38

emerged as an attractive but challenging NLP task. Its39
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Sets: 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 = 1, 2, … , 5

Parameters: 𝑃𝑖
𝑚𝑖𝑛, 𝑃𝑖

𝑚𝑎𝑥, 𝑐𝑖, 𝑐𝑖
𝑆𝑈, 𝐷𝑖, 𝑅𝑡  

Variables: 𝑢𝑖,𝑡, ∈ 0,1 , 𝑥𝑖,𝑡 ≥ 0, 𝑦𝑖,𝑡 ∈ {0,1}

Constraints:

 Power Limits for On Units:  𝑃𝑖
𝑚𝑖𝑛𝑢𝑖,𝑡 ≤ 𝑥𝑖,𝑡 ≤ 𝑃𝑖

𝑚𝑎𝑥𝑢𝑖,𝑡,  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇
 Demand Satisfaction:  σ𝑖∈𝐼 𝑥𝑖,𝑡 ≥ 𝐷𝑡, ∀𝑡 ∈ 𝑇
 Reserve Requirement:  σ𝑖∈𝐼(𝑃𝑖

𝑚𝑎𝑥 − 𝑥𝑖,𝑡) ≥ 𝑅𝑡 
 Startup Definition:  𝑦𝑖,𝑡 ≥ 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1,  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇

Objective: minimize σ𝑡=1
𝑇 σ𝑖∈𝐼(𝑐𝑖𝑥𝑖,𝑡 + 𝑐𝑖

𝑆𝑈𝑦𝑖,𝑡)

Output: modeling result

Power generation units are grouped into three distinct types, with different 

characteristics for each type (power output, cost per megawatt hour, startup cost, 

etc.). A unit can be on or off, with a startup cost associated with transitioning from 

off to on, and power output that can fall anywhere between a specified minimum 

and maximum value when the unit is on. A 5-hour time horizon is with an 

expected total power demand for each hour. The model decides which units to turn 

on, and when, in order to satisfy demand for each time period. The model also 

captures a reserve requirement, where the selected power plants must be capable 

of increasing their output, while still respecting their maximum output, in order to 

cope with the situation where actual demand exceeds predicted demand.

Input: problem description

Figure 1: An example of an optimization modeling task. The orange
text in the problem description implies domain-specific terminology,
and the green text denotes implicit constraints.

objective is to translate the text description of an OR problem 40

into math formulations for optimization solvers. Figure 1 41

illustrates an instance of NL4Opt task. It transforms an input 42

problem text into a formal mathematical model, including 43

variables, constraints, and objective functions. The problem 44

is challenging because the text descriptions of optimization 45

problems often require a large amount of domain-specific 46

knowledge to understand terminologies, such as “megawatt 47

hour”, “startup cost”, and “5-hour time horizon”, highlighted 48

in orange text. Moreover, these descriptions may contain 49

numerous implicit constraints that need to be inferred by hu- 50

man experts. Solving the problem of automatic optimization 51

modeling can enhance time and cost efficiency while enabling 52

access for users without deep optimization expertise. 53

Recently, large language models (LLMs) offer a promis- 54

ing way to make optimization more accessible. They can 55

understand the complicated text descriptions — identity the 56

optimization objective and extract the decision variables 57

and constraints. Consequently, they automatically build the 58

mathematical model and generate the code. Numerous works 59

have been proposed in this rapidly expanding field: 60



• Domain-specific LLM. Representative works such as61

ORLM [Tang et al., 2024] and LLMOPT [Jiang et al.,62

2024] take advantage of data synthesis and instruction63

tuning to enhance the capability of base model for64

optimization modeling.65

• Advanced Inference Framework: Various reasoning66

frameworks have emerged, include multi-agent systems67

(e.g. Chain-of-Experts [Xiao et al., 2024] and OptiMUS68

[AhmadiTeshnizi et al., 2024]) and chain-of-thought69

variants (e.g. Tree of Thoughts [Yao et al., 2023],70

Autoformulation [Astorga et al., 2024]).71

• Benchmark Datasets and Evaluation. There have72

been multiple benchmark datasets released, such as73

IndustryOR [Tang et al., 2024], NL4Opt [Ramamon-74

jison et al., 2023] and MAMO [Huang et al., 2024].75

However, these datasets vary significantly in quality, and76

evaluation methods lack standardization across different77

studies.78

Thus, it is of high necessity to present a just-in-time79

survey to summarize the progress and indicate possible future80

research directions. In this paper, we propose the first81

systematic review of optimization modeling in the era of82

LLMs. As shown in Figure 3, we present a detailed taxonomy83

of the various methodologies employed to harness the power84

of LLMs for optimization modeling. Besides, we noticed that85

existing benchmark datasets are associated with high error86

rates and performed data cleaning to enhance quality. We87

constructed a new leader-board with fair comparison in terms88

of base model and benchmark datasets, and deliver new in-89

sights of performance evaluation. To benefit the community,90

these datasets and implementation code are accessible from91

our online portal1.92

2 Background93

2.1 Problem Definition94

Optimization modeling transforms a problem description in95

natural language P into a model M. Mathematically, an96

optimization model is defined by an objective and a set of97

constraints, as shown in Equation 1.98

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

(1)

Here, x is the vector of decision variables, f(x) denotes the99

objective function, gi(x) and hj(x) represent the inequality100

and equality constraints respectively.101

2.2 Abstract Model and Concrete Model102

In practice, optimization models can be categorized into two103

types: abstract models and concrete models. A model whose104

parameters are denoted by mathematical symbols called a105

abstract model, while a model whose parameters are specified106

by numerical values is called a concrete model. Correspond-107

ingly, optimization modeling can be divided into two types:108

1https://anonymous.4open.science/r/LLM4OR-2781
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Figure 2: Comparison between concrete and abstract models. The
right part illustrates a linear programming formulation example.

concrete modeling and abstract modeling, as illustrated in 109

Figure 2. Concrete modeling directly translates a problem 110

description containing numerical parameters into a concrete 111

model. In contrast, abstract modeling follows a model- 112

data separation approach where the problem description only 113

contains the model structure, with parameters are provided 114

separately at a later stage. 115

3 Technical Stack of Optimization Modeling 116

This section presents a typical technical stack for applying 117

LLMs to optimization modeling. The pipeline consists of 118

four key steps: (1) data preparation and LLM fine-tuning; (2) 119

inference; (3) benchmarking; and (4) evaluation. Figure 3 120

shows the representative works in each step of this pipeline. 121

3.1 Data Synthesis and Fine-tuning 122

Data Synthesis Methods 123

It is a common practice to fine-tune language models for 124

specialized domains such as optimization modeling. How- 125

ever, fine-tuning requires a substantial amount of high-quality 126

training data. In the field of optimization modeling, data 127

availability is limited due to the scarcity of problem sources 128

and the high cost of problem annotation. To address this chal- 129

lenge, current approaches employ data synthesis to generate 130

training datasets. Formally, the data synthesis process can 131

be defined as seed → {P ′,M′}, where P ′ represents the 132

generated problem description, M′ denotes the correspond- 133

ing modeling and seed is the seed data of generation process. 134

Depending on the primary focus of the generation process, 135

existing works can be divided into two approaches: problem- 136

centric and model-centric. 137

Problem-centric The problem-centric approach involves 138

two steps. First, it takes an existing problem P and generates 139

a new problem P ′. Then, it automatically produces the 140

corresponding model M′ using LLMs, with human experts 141

filtering out low-quality annotations. In the first step, OR- 142

Instruct [Tang et al., 2024] devises three primitives to in- 143

crease the diversity of a problem: modifying constraints and 144

objectives, rephrasing questions for scenario diversity, and 145

adding multiple modeling techniques for linguistic diversity. 146

Besides, the data augmentation pipeline introduced in LL- 147

MOPT [Jiang et al., 2024] proposes seven primitives to fur- 148

ther enhance diversity by incorporating new instructions on 149

modifying the problem type and scenario. Beyond diversity, 150

Evo-Step-Instruct [Wu et al., 2025] introduces complexity 151

https://anonymous.4open.science/r/LLM4OR-2781
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Figure 3: Left: Taxonomy of LLMs-based optimization modeling, organized according to the LLMs’ technical stack. Right: Representative
works for each category are presented in chronological order. The dashed arrows indicates where later works build upon techniques proposed
in earlier studies.

as an additional dimension, along with a method to modify152

constraints, parameters, and objectives progressively to create153

more challenging problems. However, the problem-centric154

approach is limited in its ability to escalate complexity. As the155

complexity grows, generating a valid solution model becomes156

more difficult, leading to a higher risk of errors in annotations.157

To address this, Evo-Step-Instruct employs a sophisticated158

workflow to filter out unqualified data.159

Model-centric The model-centric method adopts a differ-160

ent approach by first generating an augmented model M′161

and then crafting a corresponding problem description P ′.162

Compared to problem-centric approach, this methodology163

provides more fine-grained control over instance types and164

difficulty while ensuring the labeled model remains solvable.165

MILP-Evolve [Li et al., 2024] pioneer this approach by using166

existing model code as input, prompting LLMs to add, delete,167

or mutate code elements to evolve new models. However,168

since this work focus solely on generating MILP instances,169

it does not incorporate the problem description generation170

step. Similarly, OptiBench [Wang et al., 2024b] prioritizes171

model code generation but differs by using simple seeds such172

as model types (e.g., MILPs or MIPs), problem classes (e.g.,173

knapsack problem), and domains (e.g., cargo loading) instead174

of existing models. This approach enables better control175

over dataset distribution. After code generation, LLMs176

transform the solver code into detailed word description.177

Another work, ReSocratic [Yang et al., 2025], extends this178

paradigm by defining models as semantically rich formatted179

demonstrations. Unlike pure code, these demonstrations180

incorporate structured data for variables, objective func-181

tions, and constraints, along with their natural language182

descriptions, resulting in richer semantic content. ReSocratic183

employs a multi-step sampling method with LLMs to first 184

generate such documentation, which is then transforms into 185

comprehensive problem descriptions as data points. 186

Fine-tuning Methods 187

Once the data is prepared, the next step is to fine-tune 188

open-source LLMs to enhance their optimization modeling 189

capabilities. Fine-tuning typically involves two key steps: 190

model instruction training and model alignment. Existing 191

works [Tang et al., 2024; Wang et al., 2024a; Wu et al., 192

2025] focus on the first step by applying supervised fine- 193

tuning (SFT) with synthetic data. Meanwhile, LLMOPT 194

[Jiang et al., 2024] introduces Kahneman-Tversky Optimiza- 195

tion (KTO) [Ethayarajh et al., 2024], which further aligns 196

model outputs with human preferences and helps mitigate 197

biases. Despite these advancements, there remains a notable 198

gap in research exploring innovative training techniques and 199

paradigms for optimization modeling, highlighting the need 200

for further investigation. 201

3.2 Inference 202

During the inference stage, trained LLMs translate the prob- 203

lem description P into the modeling result M, which can 204

be either executable code or structured documentation. As 205

with other domain-specific tasks, prompt engineering is a 206

straightforward yet effective method for applying LLMs to 207

optimization modeling problems. Moreover, as illustrated in 208

Figure 4, the capabilities of LLMs can be enhanced along two 209

dimensions. One approach involves inference-time scaling, 210

which encourages LLMs to generate additional intermediate 211

reasoning steps (referred to as “X-of-thought”). The other 212

approach scales up the single LLM to the LLM-based multi- 213

agent system (referred to as “multi-expert”). 214
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Figure 4: Three types of inference methods.

Prompt At the advent of ChatGPT, NL4Opt [Ramamon-215

jison et al., 2023] pioneers the use of ChatGPT for solving216

optimization modeling problems. This work introduces a217

simple prompt template comprising three components: the218

problem description, task instructions, and format control.219

Since then, many studies have leveraged LLMs for optimiza-220

tion modeling via prompt engineering, which varies between221

training-based and training-free approaches.222

For training-based approaches, prompts are primarily de-223

signed for format control, helping the model generate output224

that conforms to the training set’s label format. For example,225

ORLM [Tang et al., 2024] prompts the model to first produce226

a plain-text description of the model and then generate the227

corresponding code. Similarly, LLMOPT [Jiang et al.,228

2024] instructs the trained LLM to output a five-element229

formulation, while RareMIP [Wang et al., 2024a] prompts230

the model to generate LaTeX code that details the model-231

building process. Additionally, TTG [JU et al., 2024] uses232

prompts to produce JSON output, which can be easily parsed233

into a symbolic model suitable for solvers.234

For training-free approaches, the goal shifts toward infus-235

ing richer domain knowledge into LLMs through the prompt.236

For instance, OptiChat [Chen et al., 2023] provides the LLM237

with step-by-step instructions that mimic the guidance of238

an optimization expert, thereby equipping the model with239

domain-specific insights. It also employs few-shot learning240

by supplying examples of optimization problems paired with241

expert solutions. Similarly, City-LEO [Jiao et al., 2024]242

adopts in-context learning techniques to construct its LLM243

pipeline, and another work [Li et al., 2023b] incorporates244

prior knowledge into prompt design to further enhance LLM245

performance on routine tasks.246

Although prompt engineering can be rapidly implemented,247

it only scratches the surface of what LLMs can achieve in248

tackling complex modeling problems. Much of their potential249

remains untapped. The following sections introduce two250

promising directions to unleash this power: X-of-thought and251

Multi-Agent.252

X-of-Thought To enhance the reasoning capabilities of253

LLMs and tackle increasingly complex optimization model-254

ing problems, researchers have begun exploring LLMs’ po-255

tential during inference time. The chain-of-thought (CoT) ap-256

proach [Wei et al., 2022] pioneers LLM reasoning by encour-257

aging the model to think step-by-step, effectively bridging 258

logical gaps during inference. Building on this foundation, 259

Tree of Thoughts (ToT) [Yao et al., 2023] and Graph of 260

Thoughts (GoT) [Besta et al., 2024] further enhance rea- 261

soning by employing tree- and graph-structured exploration 262

of intermediate thoughts. Collectively, these approaches are 263

known as “X-of-thought” [Chu et al., 2024]. Although orig- 264

inally designed for general reasoning tasks, these methods 265

have also been successfully applied to optimization modeling 266

[Xiao et al., 2024]. 267

Subsequently, several X-of-thought methods tailored for 268

optimization modeling have emerged. For instance, CAFA 269

[haoxuan deng et al., 2024] defines the inference process 270

as a linear sequence of steps that explicitly captures the 271

reasoning required for modeling. Furthermore, Autoformu- 272

lation [Astorga et al., 2024] treats the modeling process 273

as a Monte Carlo Tree Search, where each level of the 274

tree corresponds to a specific modeling step—sequentially 275

addressing parameters and decision variables, the objective 276

function, equality constraints, and inequality constraints. 277

This framework integrates an LLM with two key components: 278

(1) a dynamic formulation hypothesis generator responsible 279

for exploring the Monte Carlo Tree, and (2) an evaluator that 280

provides feedback on the correctness of solutions at the leaf 281

nodes. 282

Recently, OpenAI’s o1 [OpenAI, 2024] has attracted sig- 283

nificant attention for its exceptional reasoning capabilities in 284

tackling complex problems, including optimization model- 285

ing. It explicitly integrates an extended internal chain-of- 286

thought into its inference process, representing a promising 287

direction that merits further investigation. 288

Multi-Expert Another approach to scaling language mod- 289

els for complex reasoning is the use of multi-agent col- 290

laboration systems [Qian et al., 2024]. In the field of 291

optimization modeling, LLMs are adapted to mimic human 292

experts and collaborate to complete the entire modeling 293

process. This system is referred to as multi-expert system. 294

Early examples include OptiMUS [AhmadiTeshnizi et al., 295

2024] and Chain-of-Experts (CoE) [Xiao et al., 2024]. Both 296

systems predefine a set of LLM-based experts, with two 297

key roles: a formulator for optimization modeling and a 298

programmer for code generation. They differ in how they 299

manage the workflow: OptiMUS uses a predefined workflow 300

to engage experts in collaborative problem-solving, while 301

CoE employs a special expert called the “Conductor” to 302

orchestrate the entire process. Additionally, CoE introduces 303

a system-level reflection mechanism to adjust answers based 304

on external feedback. 305

Subsequently, the OptiGuide framework [Li et al., 2023a] 306

is proposed with a focus on improving the reliability and 307

readability of modeling results. Specifically, it incorporates 308

a safeguard agent to address potential output errors and an 309

interpreter that generates human-readable explanations of 310

both the modeling results and the solver’s solution. Similarly, 311

OptLLM [Zhang et al., 2024a] includes a diagnostic agent 312

that reformulates the modeling output based on internal 313

feedback when code fails syntax tests. Explainable Opera- 314

tions Research (EOR) [Zhang et al., 2025] adopts a similar 315



framework to OptiGuide but focuses on what-if analysis for316

optimization modeling, in which way it can evaluate the317

impact of complex constraint changes on decision-making.318

Compared to X-of-Thought, the merits of multi-expert319

methods lie in their interpretable intermediate results and bet-320

ter capability of safeguarding against potential errors hidden321

in the output, making them a popular direction for future322

research.323

3.3 Benchmarks324

To evaluate performance of LLMs-based optimization mod-325

eling methods, several benchmarks have been proposed. As326

discussed in Section 2, these benchmarks can be categorized327

into two types: concrete modeling and abstract modeling.328

Concrete Modeling NL4Opt [Ramamonjison et al., 2023]329

is the first optimization modeling benchmark proposed in a330

competition, featuring a test set of 289 instances. However,331

NL4Opt primarily focuses on simple optimization modeling332

problems. To address the need for more challenging cases,333

IndustryOR [Tang et al., 2024] is introduced, consisting of334

100 real-world industry cases. IndustryOR covers a variety335

of problem types—including mixed integer programming and336

nonlinear integer programming—and features descriptions337

with or without tabular data, thereby increasing problem338

complexity. However, IndustryOR suffers from quality con-339

trol issues, which result in a high error rate. To overcome340

this limitation, ReSocratic [Yang et al., 2025] introduces341

a comprehensive framework that applies multiple filters to342

remove erroneous cases, efficiently improving dataset quality343

and expanding the test set to 605 instances. While the annota-344

tions in these three benchmarks focus solely on providing an345

objective as final answer, MAMO [Huang et al., 2024] goes a346

step further by including optimal variable information, offer-347

ing additional perspectives for evaluating model correctness.348

Note that MAMO also categorize problems into three classes:349

EasyLP, ComplexLP and ODE. Our study primarily focuses350

on the former two categories. All these benchmarks are351

designed for end-to-end modeling tasks. WIQOR [Parashar352

et al., 2025], on the other hand, employs what-if analyses to353

assess performance, providing insights into whether LLMs354

possess a deeper understanding of the modeling process.355

Abstract Modeling ComplexOR [Xiao et al., 2024] is356

an abstract modeling benchmark introduced in the CoE,357

containing 37 instances collected from both industrial and358

academic scenarios. In ComplexOR, numerical parameter359

values are separated from the problem descriptions. NLP4LP360

[AhmadiTeshnizi et al., 2024] is another early abstract mod-361

eling benchmark, extending the number of instances to 269.362

Although both datasets are relatively small, the subsequent363

release of OptiBench [Wang et al., 2024b] offers a larger364

collection of 816 instances following a model-data separation365

format.366

While most existing research focuses on concrete model-367

ing, it is worth noting that abstract modeling is more common368

in industrial scenarios, where an abstract model, once con-369

structed, can be reused multiple times with different concrete370

parameters. However, due to the inherent complexity of371

abstract modeling, high-quality benchmarks remain scarce.372

Dataset Size Complexity Error Rate
NL4Opt 289 5.59 ≥ 26.4%
IndustryOR 100 14.06 ≥ 54.0%
EasyLP 652 7.12 ≥ 8.13%
ComplexLP 211 13.35 ≥ 23.7%
ReSocratic 605 7.45 ≥ 16.0%
NLP4LP 269 5.58 ≥ 21.7%
ComplexOR 37 5.98 ≥ 24.3%

Table 1: Quality statistics of optimization modeling benchmarks.
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Figure 5: Statistics of complexity distribution for each benchmark
visualized using a violin plot. X-axis shows different benchmarks,
and y-axis shows the complexity indicator.

Analysis on Benchmarks 373

To assess the quality of current benchmarks, we conduct an 374

in-depth analysis of them. The results are shown in Table 375

1 and Figure 5. We evaluate three key statistical features: 376

(1) Data Size: the number of instances in the benchmark’s 377

test set; (2) Complexity: for each problem, we first use 378

standard prompting to generate a model and then use the 379

number of variables and constraints in the model to indicate 380

its complexity; (3) Error Rate: to compute this metric, 381

we have 11 human experts manually identify errors in the 382

problems, and each error case is cross-validated by at least 383

three different experts. 384

According to our results, we obtain several key findings. 385

First, in current benchmarks, the error rate is relatively high. 386

As shown in Table 1, except for EasyLP in MAMO, the error 387

rates of other benchmarks exceed 15%, with IndustryOR even 388

reaching as high as 54%, indicating that these benchmarks 389

are not entirely reliable for evaluation. The errors can be 390

caused by three main factors: (1) logical errors in prob- 391

lem descriptions, such as unbounded constraints; (2) poorly 392

defined parameters that lead to unsolvable models; and (3) 393

incorrect ground truth data. To address these issues, we 394

manually filter all error cases and compile a unified, cleaned 395

collection of optimization modeling benchmarks to facilitate 396

future research. 397

Takeaway #1: The high error rates in current benchmarks
undermine their reliability. We curate a cleaned and
unified set of optimization modeling benchmarks to
facilitate more accurate evaluation.

398

Second, our analysis of benchmark complexity reveals that 399

current benchmarks mainly cover simple cases and exhibit 400



Methods NL4Opt IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR
Standard 61.2% 38.1% 70.3% 57.7% 73.6% 48.4% 42.9%
CoT 62.2% 40.5% 49.5% 42.3% 74.7% 43.6% 39.2%
Chain-of-Experts 66.7% 31.2% 94.4% 50.6% 87.4% 71.2% 57.1%
CAFA 68.1% 41.1% 71.2% 44.5% 50.0% 40.1% 46.4%

ORLM-LLaMA-3 8B 73.8% 42.9% 90.4% 59.5% 76.4% 61.8% 50.0%

Table 2: Performance comparison of existing fully open-source methods on cleaned benchmarks in a unified setting (use GPT-4o for training-
free methods and use accuracy as metric). All results are reproduced using our standardized evaluation method.

an imbalanced distribution. As shown in Table 1, NL4Opt,401

NLP4LP, and ComplexOR clearly present low levels of chal-402

lenge. Figure 5 further shows that most instances concentrate403

at the simple and medium complexity levels, with instances of404

complexity greater than 10 being very scarce, which indicates405

a lack of truly complex cases.406

Takeaway #2: Existing benchmarks are dominated by
simple and moderate problems, with very few challenging
cases. This imbalance highlights the need for more high-
complexity benchmarks.

407

3.4 Evaluation408

Evaluating optimization models can be challenging because409

it is often difficult to determine the correctness of the results.410

There are two primary approaches exist. The first is objective-411

wise evaluation, which focuses exclusively on the final objec-412

tive value produced by the solver. The second is model-wise413

evaluation, where the generated model is directly compared414

against a ground truth model.415

Objective-wise In objective-wise evaluation, the focus is416

solely on the correctness of the final objective. This approach417

originates from mathematical word problems [Cobbe et al.,418

2021], where LLMs directly generate a final answer and419

compare it to the ground truth, referred as the exact answer420

match method. However, in optimization modeling, LLMs421

produce a model rather than a final answer. To address this,422

a test-driven method is introduced in Chain-of-Experts (CoE)423

[Xiao et al., 2024], where a solver takes the generated model424

(with specified parameters), computes the final objective, and425

compares it to the ground truth. Subsequent works, including426

ORLM [Tang et al., 2024], CAFA [haoxuan deng et al.,427

2024], and Autoformulation [Astorga et al., 2024], adopt this428

same test-driven method.429

Model-wise While objective-wise evaluation is straight-430

forward, it has a notable limitation: a correct objective431

value does not necessarily guarantee a correct model. To432

address this, model-wise evaluation is introduced. NL4Opt433

[Ramamonjison et al., 2023] pioneers a protocol that converts434

modeling results into a canonical formulation, where the435

coefficients of the objective function and constraints are436

extracted into matrices and then are compared with ground437

truth. Although this method captures model correctness438

comprehensively, it provides only a binary metric and fails to439

reflect the degree of correctness, which is essential for fine-440

grained assessments. To overcome this limitation, a graph-441

based evaluation method [Xing et al., 2024] is proposed, 442

representing modeling results as a graph and using graph edit 443

distance to produce a continuous correctness score between 444

0 to 1. Building on this, a modified graph isomorphism 445

testing algorithm [Wang et al., 2024b] offers even more 446

precise evaluation, with theoretical guarantees ensuring the 447

correctness of its comparisons. 448

Evaluation Result of Existing Methods 449

In this survey, we observe that the reported evaluation results 450

across existing works often exhibit inconsistencies, making 451

fair comparisons challenging. These discrepancies arise 452

primarily from three factors. 453

• Choice of Base Model: Researchers use different com- 454

mercial LLMs as base model. For example, Chain- 455

of-Experts employs GPT-3.5, whereas Autoformulation 456

uses GPT4-mini, due to the rapid evolution of LLMs. 457

• Dataset Preprocessing Approaches: Different strate- 458

gies are used for handling incorrect samples and decimal 459

precision, resulting in varying preprocessing pipelines. 460

• Evaluation Metrics: Metrics also vary: ORLM reports 461

micro and macro average accuracy, whereas Chain-of- 462

Experts focuses on compile error rates. 463

These factors collectively contribute to the difficulty of 464

establishing a consistent leader-board for optimization mod- 465

eling methods. 466

To address the challenge of inconsistent evaluations and 467

create a fair comparison, we adopt a unified setting to assess 468

all fully open-source optimization modeling methods on our 469

cleaned benchmarks. Specifically, we employ the cutting- 470

edge commercial LLM gpt-4o-2024-08-06 as the base model 471

for all training-free methods. We report accuracy as the 472

evaluation metric, as it is the most widely accepted measure. 473

Regarding optimization modeling methods, we strive to 474

evaluate every fully open-source approach. However, many 475

methods mentioned in Subsection 3.2 remain closed-source, 476

including LLMOPT [Jiang et al., 2024], RareMIP [Wang et 477

al., 2024a], Autoformulation [Astorga et al., 2024], OptLLM 478

[Zhang et al., 2024a], LLM Routine [Li et al., 2023b], 479

City-LEO [Jiao et al., 2024], and TTG [JU et al., 2024]. 480

Three other methods, including OptiChat [Chen et al., 2023], 481

OptiGuide [Li et al., 2023a], and EOR [Zhang et al., 2025], 482

are interactive and thus not directly comparable to end-to- 483

end approaches. Additionally, OptiMUS [AhmadiTeshnizi et 484

al., 2024] requires a preprocessing step that is unavailable 485

for most benchmarks, leading us to exclude it. For broader 486



comparison, we include two general reasoning strategies, in-487

cluding standard prompting and chain-of-thought prompting,488

as baselines.489

Takeaway #3: The evaluation results reported in existing
works lack a unified standard. And the open-source
landscape in optimization modeling remains limited.

490

Table 2 shows the overall results, revealing several key491

observations. First, Chain-of-Experts and ORLM are two492

competitive methods in optimization modeling. While Chain-493

of-Experts works well for simpler tasks, ORLM surpasses494

it on more complex datasets such as IndustryOR and Com-495

plexLP, indicating that trained models may be more effec-496

tive in challenging scenarios. Second, contrary to popular497

belief, CoT does not always yield better results than standard498

prompting. On certain datasets, it even leads to a noticeable499

drop in performance, supporting the idea that CoT should500

be applied selectively [Sprague et al., 2024]. Finally, the501

performance of CAFA is comparable to CoT. This is likely502

because CAFA can be seen as a specialized form of CoT503

prompting.504

Takeaway #4: Three key findings: (1) Chain-of-Experts
and ORLM emerge as the most competetive frameworks;
(2) CoT prompting does not always outperform standard
prompting; (3) The performance of CAFA resembles that
of a specialized CoT strategy.

505

4 Online Portal for Optimization Modeling506

We develop a website portal that integrates the resources507

of LLM-based optimization modeling and provides great508

convenience for researchers to follow the topic. First, we509

provide the download links for both original and cleaned510

version of benchmark datasets. Second, we collect and511

publish the implementation of existing solutions and provide512

a leader-board to report their performance on the benchmarks.513

Thirdly, we continue to update the latest research papers514

on this promising research domain. We believe such an515

integrated portal brings significant benefit for the community.516

5 Challenges and Future Directions517

5.1 Reasoning Model for Optimization Modeling518

A prominent trend in recent LLM research is enhancing the519

reasoning capabilities of base models. The release of OpenAI520

o1 [OpenAI, 2024] demonstrates impressive performance on521

complex mathematical tasks. However, these advances have522

not yet been transferred to optimization modeling. One key523

obstacle is that training a reasoning model heavily relies on524

long chain-of-thought data, which is expensive and difficult525

to annotate in the context of optimization modeling. To526

bridge this gap, Deepseek R1 Zero [et al., 2025] proposed527

a promising alternative by using pure reinforcement learning528

for training, enabling LLMs to develop reasoning capabilities529

without requiring supervised chain-of-thought annotations.530

This reinforcement learning strategy is also promising for531

optimization modeling, where the modeling process can532

be formulated as a Markov Decision Process and solver 533

feedback can be used as reward to train the reasoning model. 534

5.2 Explainable Modeling Processes 535

The black-box nature of LLMs, most existing studies treat 536

optimization modeling as an end-to-end process. However, 537

the explainability of this process is also crucial for real- 538

world applications, as it allows experts to effectively debug, 539

modify, and understand the generated models. Recent work 540

like Explainable Operations Research [Zhang et al., 2025] 541

has made progress in this direction by developing methods 542

to evaluate how modeling decisions impact outcomes. More 543

research efforts to develop a trustworthy and user-friendly 544

modeling framework are encouraged. 545

5.3 Domain Knowledge Injection 546

The optimization modeling process relies heavily on domain 547

knowledge. As demonstrated by a research [Runnwerth et 548

al., 2020], much of this specialized knowledge, including 549

conception and empirical insights, can be stored in a knowl- 550

edge graph. Incorporating such domain-specific knowledge 551

into LLMs to aid the modeling process remains a significant 552

challenge. A recent work [Zhang et al., 2024b] uses rule 553

mining to construct training data from knowledge graphs and 554

introduces a learning method to integrate knowledge graphs 555

with LLMs, offering a promising pathway for advancing the 556

field of optimization modeling. 557

5.4 Human-in-the-Loop Modeling 558

Existing inference approaches have primarily focused on 559

the modeling capabilities of LLMs and have not explored 560

human intervention during the inference process. Recent 561

research indicates that LLMs can proactively query humans 562

for domain-specific knowledge when needed [Pang et al., 563

2024]. These characteristics offer an opportunity to open 564

up a new paradigm, human-in-the-loop modeling, where 565

human experts contribute external knowledge, clarifications, 566

and insights at critical points. To develop such a collaborative 567

system, we need to overcome the following challenges. First, 568

effective mechanisms are needed to identify when human 569

intervention is required, since LLMs themselves lack this 570

capability. Second, an effective human-in-the-loop frame- 571

work should ensure that humans can seamlessly integrate 572

their expertise into the inference process. 573

6 Conclusion 574

This survey provides a timely overview of the rapid progress 575

in applying LLMs to optimization modeling. We present a 576

thorough taxonomy of existing works across data synthesis, 577

model fine-tuning, inference approaches, benchmarks, and 578

evaluation methods, offering a structured understanding of 579

the technical stack. We also highlight persisting challenges, 580

particularly in data quality and evaluation protocols, that 581

hinder reliable performance comparisons. To address these 582

gaps, we evaluate current open-source methods on a set of 583

cleaned and standardized benchmarks, revealing several key 584

insights. Building on these findings and the latest advances, 585

we propose promising directions to inspire further research in 586

this emerging field. 587
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